

Child Anemia

Scope, consequences and solutions

Tom Schaetzel Infant & Young Child Nutrition (IYCN) Project

This presentation was produced through support provided to the Infant & Young Child Nutrition (IYCN) Project by the U.S. Agency for International Development, under the terms of Cooperative Agreement No. GPO-A-00-06-00008-00. The opinions herein are those of the author(s) and do not necessarily reflect the views of the U.S. Agency for International Development.

What is anemia?

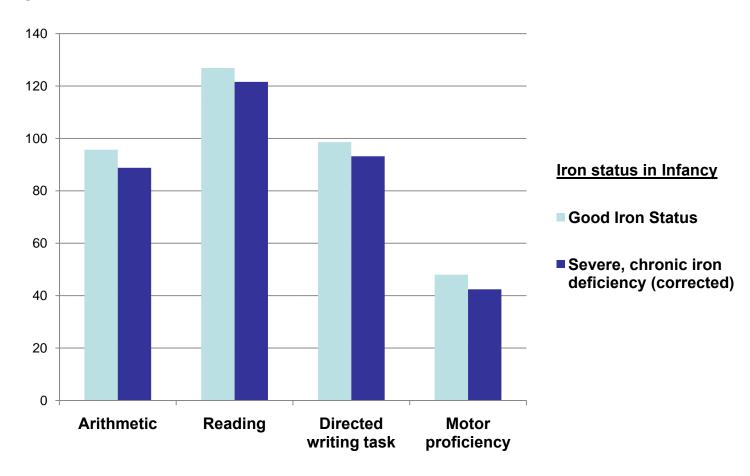
- Low hemoglobin concentration
- Low packed volume of red blood cells
- Anemia vs. iron deficiency anemia (IDA)
 - Not all anemia results from inadequate iron intake
 - IDA occurs when iron stores are inadequate in addition to low hemoglobin
 - Reasonable to assume that iron deficiency is responsible for 50% of anemia (Stolzfus et al, 2003)

What causes anemia?

- Genetic disorder (e.g., hemoglobinopathy)
- Infection (malaria, chronic infection)
- Blood loss
- Inadequate iron intake
 - Requirement higher during periods of high growth (e.g., infants and young children)
 - Difficult to meet requirement without supplements or fortified foods, especially with monotonous cereal-based diet

How common is child anemia?

Global prevalence: 47.4%, or 293.1 million infants and children


Region	Prevalence (%)	Number (000,000)
Africa	64.6	93.2
Asia	47.7	170.0
Europe	16.7	6.1
Latin America / Caribbean	39.5	22.3
North America	3.4	0.8
Oceania	28.0	0.7

Source: McLean et al, 2008

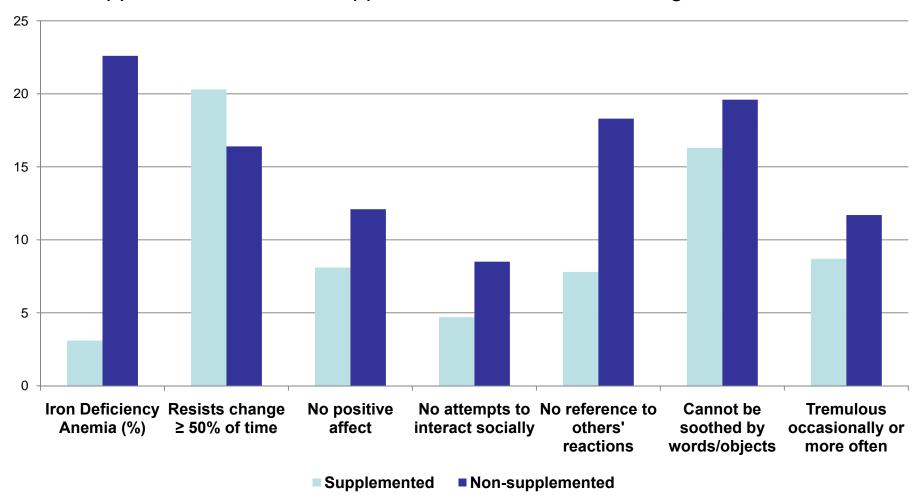
What are the consequences?

Observational study 10-year follow-up, Costa Rica


Cognitive and motor performance

Source: Lozoff et al, 2000

Observational study 10-year follow-up


Behaviors

Source: Lozoff et al, 2000

Prevention Study

Supplemented vs. Non-supplemented at 12 months of age, Chile

Source: Lozoff et al, 2003

What are the solutions for IDA?

Iron syrup	Fortified complementary food
 Acceptability problems for moms and kids Dental stains Metallic taste 	• Expensive
 Costs associated with bottle breakage and transport of heavy liquid 	 Poor low income market penetration

Micronutrient powders

- Vitamins and minerals for mixing with solid or semi-solid foods at the time of consumption ("home fortification")
- Target iron deficiency, but multiple micronutrients
- Single daily dose (no measurement of sachet)
- Lightweight
- No "breakage"
- No staining
- No metallic taste
- < 5 cents per sachet

Photo: Stanley Zlotkin

Two common formulations

Nutritional anemia formulation

Micronutrient	A mount
Iron	12.5 mg
Zinc	5 mg
Folic Acid	160 µg
Vitamin A	300 µg RE
Vitamin C	30 mg

- Iron dose based on WHO/ UNICEF/INACG recommendation for infants 6-24 m, where the prevalence of anemia exceeds 40 percent
- Other nutrient levels based on WHO RNI and RDAs for children 6-24m

Multiple micronutrient formulation

A mount
RE
30 mg
5.0 µg
5 mg a-TE
0.5 mg
0.5 mg
0.5 mg
0.9 µg
150 µg
6 mg
10 mg
4.1 mg
0.56 mg
90 µg
17.0

Do micronutrient powders work?

Country studies

Ghana(4)	Israel
China	Canada (Aboriginal peoples)
Bolivia	India
Sri Lanka	Bangladesh (3)
Pakistan	Mongolia
Cambodia	Haiti

Meta-analysis findings

- "...as effective as iron drops for treating anaemia"
- "...home fortification is highly effective at reducing iron deficiency and decreases the prevalence of anaemia by half."
- "...results of...prevention trials suggest positive effects...on child development, but further research is needed."

Source: Dewey, Yang, and Boy; 2009

Photo: Aurelio Ayala III

How to program micronutrient powders?

- Consuming 60 doses (sachets) over 4 months protects against anemia for 6 months
- Possible mechanisms
 - Child Health Days
 - Immunization contacts
 - Growth monitoring and promotion contacts
 - Other?

Thank you

Please visit www.iycn.org